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Noise and coupling can optimize the response of arrays of nonlinear elements to periodic signals. We
analyze such array-enhanced stochastic resonance �AESR� using finite-state transition rate models. We simply
derive the transition rate matrices from the underlying potential energy function of the corresponding Langevin
problem. Our implementation exploits Floquet theory and provides useful theoretical and numerical tools. Our
framework both facilitates analysis and elucidates the mechanism of AESR. In particular, we show how
sublinear coupling diminishes AESR, but superlinear coupling enhances it.
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I. INTRODUCTION

Twenty-five years ago, Benzi et al. �1� introduced the phe-
nomenon of stochastic resonance �SR�, a noise-enhanced re-
sponse to weak signal. An early application was a possible
mechanism for climatic change. Since then, this nonlinear
phenomenon has been studied extensively and generalized in
many ways �2�. An important extension includes related phe-
nomena in coupled systems. Jung et al. �3� proved that glo-
bal coupling could enhance the spectral power amplification
of the collective, summed response of an array of stochastic
resonators. Lindner et al. �4� demonstrated numerically that
local coupling could enhance the signal-to-noise ratio �SNR�
of individual stochastic resonators, and that this array-
enhanced stochastic resonance �AESR� was accompanied by
spatiotemporal synchronization for an optimal coupling and
noise whose strength and intensity scaled simply with array
size �5�. Marchesoni et al. �6� derived these scaling laws
analytically by mapping the discrete problem onto the kink-
antikink dynamics of a continuous �4 model. More recently,
Kanamaru et al. �7� derived similar scaling laws for AESR in
a system of diffusively coupled FitzHugh-Nagumo model
neurons, suggesting that this phenomenon may be important
in naturally occurring neuronal and sensory arrays.

Löcher and collaborators �8� first realized AESR experi-
mentally in arrays of diode resonators, and later �9� demon-
strated AESR numerically in a coupled map lattice. Rowe
and Etchegoin �10� then observed AESR and related phe-
nomena in linearly coupled Schmitt triggers. Recently,
Sharpe et al. �11� obtained similar results in two-dimensional
arrays of liquid crystal light valves. The occurence of AESR
in coupled ordinary differential equations, coupled map lat-
tices, a �4 model, and experimentally in diverse one- and
two-dimensional systems suggests its universal nature.

Schimansky-Geier and colleagues �12–14� have studied
AESR extensively. After obtaining analytic expressions for
the SNR of the summed output of two �nonidentical� resona-
tors in the limits of strong and weak coupling �12�, they
generalized the two-state transition rate model of SR to ar-
rays of coupled stochastic resonators �15�. They chose a tran-
sition rate matrix so that the array evolved according to a
solvable stochastic Ising model, thereby allowing them to
demonstrate analytically that, in the weak-signal limit, cou-

pling can increase the SNR of individual elements but not
the SNR of the collective, summed output of all the elements
in the array �13,14�.

We also seek to create finite-state transition rate models of
AESR, simple prototype systems that facilitate analysis of
coupling on stochastic resonance. To explicitly apply the rate
theory one must choose a transition matrix. In this paper, we
will describe a general and intuitive technique for construct-
ing a transition rate matrix based on an underlying Langevin
model, a set of stochastic differential equations in a potential
energy landscape. Our implementation of the rate model will
exploit the periodicity of the global forcing to yield numeri-
cal and analytic advantages. We find that these rate models
compare favorably with the well-established Langevin mod-
els. Along the way, our heuristics will show how nonlinear
coupling can enhance or suppress AESR.

II. LANGEVIN MODEL

We first consider an overdamped chain of bistable oscil-
lators with local, linear coupling subject to a global signal
and local noise. Let the components xn of the N-dimensional
vector x� specify the state of the N oscillators. The evolution
obeys the Langevin equation

�tx� = − �� U�x�,t� + ���t� , �1�

where the time-dependent potential energy can be decom-
posed into three components

U�x�,t� = U0�x�� + Uc�x�� + Us�x�,t� . �2�

The first component is the unperturbed, bistable energy

U0�x�� = �
i=1

N �−
1

2
axi

2 +
1

4
bxi

4� , �3�

with barrier height h=a2 /4b and barrier half-width c=�a /b.
The second component is the coupling energy

Uc�x�� = �
i=1

N−1
1

2
��xi − xi+1�2, �4�

with coupling stiffness �. The third component is the time-
dependent signal energy
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Us�x�,t� = �
i=1

N

� cos�2�ft + ��xi, �5�

with signal amplitude �, frequency f =1/T, and phase �.
Ideally, the noise is Gaussian and white with zero mean

	�i�t�
 = 0 �6�

and � correlation

	�i�t�� j�t��
 = 2D�ij��t − t�� . �7�

In practice, our computer simulations employ Gaussian
band-limited white noise. Typical parameter values �15� are
a=32, b=1 for the bistable potential wells, and �=8, f
=0.195 for the signal.

Figure 1 is a contour plot of the unperturbed potential
energy landscape U0�x��, which involves zero coupling and
no signal ��=�=0�, for N=2 oscillators. There are four
minima and nine extrema. The minima are labeled by the
2-tuples �++ , +−,−+ ,−−� for future reference. �In general,
there are 2N minima and 3N extrema, and the former are
labeled by the corresponding N-tuples.�

Figure 2 shows the evolution of the potential energy with
time and coupling, again for N=2 oscillators. The global
signal rocks the potential energy back and forth along the
main diagonal. The potential minima invite us to consider
transition rates among them.

We numerically integrate the stochastic Eq. �1� using the
Euler-Maruyama algorithm �16� with a typical integration
time step dt=T /20480.0025. We spectral analyze the nu-
merically generated binary-filtered time series sgn�xm�t�� of
one of the middle oscillators with a temporal sampling of 	t
and a frequency resolution of 	f . We Welch window the time
series to reduce bin leakage, average at least 256 spectra, and
find a sharp peak with power S superimposed on a Lorentz-
ian background with interpolated power N in the signal fre-
quency bin. We compute the signal-to-noise ratio R
=	f�S /N−1� /G
0, where the processing gain G=5/6 ac-
counts for the Welch window scaling of narrowband peaks.
For the shortest array of N=2, Fig. 3 plots signal-to-noise
ratio R versus noise intensity D for various coupling
strengths �. As coupling increases, the maximum R increases
and then decreases, generating a maximum within a maxi-
mum, a hallmark of AESR.

III. AESR HEURISTICS

Why does coupling enhance the SR? Consider transition
rates among the minima of Fig. 2. Optimal coupling and
noise will cause the state point to hop between the symmetric
++ and −− wells synchronously with the signal. This does
not happen for �=0 because there is a significant probability
that the state point will be trapped in the asymmetric +− or
−+ wells, or that it will be trapped in the ++ or −− well out
of synchrony with the signal �for example, in the �� well
when it is highest rather than lowest�. As � increases, the
+− and −+ wells shrink until they disappear leaving level
paths around the central maximum. These paths facilitate
noise-enabled movement to the lowest of the symmetric ++
and −− wells, and the SR is maximized. As � increases fur-
ther, these level paths shrink until they disappear leaving
only the large central maximum as a barrier separating the

FIG. 1. Contour plot of unperturbed potential energy landscape
U0�x��, for an array of N=2 uncoupled and unforced oscillators, for
parameters a=32, b=1.

FIG. 2. Potential energy landscape U�x� , t� for
different times t for an array of N=2 oscillators,
for different times t and coupling strengths �. Pa-
rameters are a=32, b=1, and �=8; 1/T= f
=0.195.
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symmetric ++ and −− wells. Synchronous hopping is now
more difficult in this quasi-one-dimensional situation as the
state point once again can get stuck in a well out of syn-
chrony with the signal. This suggests that optimal coupling
for N=2 corresponds �at least roughly� to the vanishing of
the asymmetric +− and −+ minima. Figure 4 depicts the
movement of the potential energy extrema with coupling �,
including the destruction of half the minima, for N=2. Simi-
lar behavior obtains for larger N. One way to make this heu-
ristic picture quantitative is to determine the relevant rates
governing transitions between the various states. We now
proceed to develop just such a rate description.

IV. RATE THEORY FORMULATION

Our starting point for a numerical rate formulation of
AESR is the rate equation

�tn��t� = W�t� · n��t� , �8�

where the �th component of n� is the probability of finding
the system in the state � and W is a T-periodic transition

matrix. We denote by S the total number of states. Of par-
ticular interest to us is a situation which closely reflects the N
coupled double-well problem; however, before specializing
we develop a general expression for the correlation function
which exploits the inherent structure of Eq. �8�.

A. Floquet representation of correlation function

If f�t� is a state function, then

	f�t1�f�t2�
 = �
�

�


f�fPc�,t2��,t1�Peq��,t1� , �9�

where the angular brackets denote an ensemble average. The
conditional probabilities Pc and the equilibrium probabilities
Peq can be found by solving the rate equation.

Since Eq. �8� is linear with periodic coefficients, there are
special solutions of the form �17�

�� �t� = e�th��t� , �10�

where � is constant and the vector h� is T periodic. Since n�
has S components, there are typically S linearly independent

solutions �� �j� of this special form, corresponding to S dis-
tinct Floquet exponents � j. In that case, the general solution
of Eq. �8� can be written as

n��t� = �
j

cj�
� �j��t� , �11�

where the constants cj are determined from the initial condi-
tions.

Since our problem has a unique period-T attractor, it fol-
lows that exactly one of the Floquet exponents is zero. We
label this with the subscript zero so that �0=0. The attractor
gives the equilibrium probabilities

Peq��,t1� = ��
�0��t1� , �12�

where we assume that the function �� �0� has been normalized.
Let us suppose we have determined the complete set of

Floquet exponents and corresponding normal solutions Eq.
�10�. Then we can construct the conditional probabilities as
follows. Since Pc� , t �� ,0� is the solution of the rate equa-
tion with initial condition

nk�0� = �k�, �13�

we first determine the constants c�j such that

�
j

c�j�k
�j��0� = �k�, �14�

for �=1, . . . ,S. Then

Pc�,t��,0� = �
j

c�j�
�j��t� . �15�

Putting this all together yields

	f�0�f���
 = �
�

�


f�f��
�0��0��

j

c�j�
�j���� �16�

or

FIG. 3. Langevin AESR for N=2. Upper plot shows the signal-
to-noise ratio R versus noise intensity D for different coupling
strengths �. Bottom plot focuses on movement of successive
maxima, which reveals yet another maximum. Same parameters as
in Fig. 2.

FIG. 4. �Color online� Potential energy extrema as a function of
coupling � for N=2. Asymmetric wells +− and −+ disappear when
pinned between adjacent saddles. Same parameters as in Fig. 2.
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	f�0�f���
 = �
j

e�jt��
�

�


f�h�
�0��0�c�jh

�j����f� . �17�

B. Numerical implementation

To evaluate the last expression, we need to determine the

� j, h� �j�, and c�j for a given transition matrix W. Denote by
û�j��t� the solution to Eq. �8� with initial condition n��0� hav-
ing all the probability in state j, namely, ni�0�=�ij. For each
of these S distinct initial conditions, we numerically integrate
Eq. �8� for exactly one period, t� �0,T�, at one signal phase
�, and form the S�S fundamental matrix ��t� whose jth
column is û�j��t� �17�. We then determine the eigenvalues � j

of the constant matrix ��T�, as well as its left and right

eigenvectors L� �j� and R� �j�, respectively. Then

� j =
1

T
ln� j , �18�

c�j =
L�

�j�

L� �j� · R� �j�
, �19�

and

h� �j��t� = e−�jt��t� · R� �j�. �20�

Useful checks on the numerics are that the largest eigenvalue
of ��T� should be exactly 1 �corresponding to the Floquet
exponent �0=0 discussed previously�; that all of the other
eigenvalues satisfy � j � �0,1�; and that the elements of each
column of ��t� sum to unity for any t.

Having evaluated Eq. �17�, the last step in generating the
stationary correlation function is to perform a phase average,
by repeating the process for different signal phases; we have
found that it is sufficient to average over three equally
spaced phases. By the Wiener-Khintchine theorem, the
power spectrum is the Fourier transform of the correlation
function, which we obtain by sampling the correlation func-
tion at a discrete set of points and applying a fast Fourier
transform algorithm.

C. An energy landscape rate model

So far, our description of rate models is fairly general. We
now make a particular choice which is directly motivated by
the earlier Langevin problem. Corresponding to the 2N stable
fixed points of the �weakly coupled� chain of N bistable el-
ements, we consider a rate model with S=2N states. We
choose the coordinates x�i of the ith state to be the ith N-tuple
of �c ,−c�, where c=�a /b locates a minimum of the potential
energy of an isolated oscillator. �For example, for N=2, the
states are ordered �c ,c� , �c ,−c� , �−c ,c� , �−c ,−c�, and the
third state x�3= �−c ,c� has coordinates x31=−c, x32=c.�

In choosing the transition rates, we want to exploit the
physical intuition available to us from the energy landscape
of the Langevin problem. We therefore assume that the tran-
sition rates Wij between initial stable equilibria i and j are
governed by the potential energy difference 	Uij between

the initial state and the saddle point linking the two states by
an Arrhenius formula

Wij�t� = �e−	Uij�t�/D, �21�

where the prefactor � carries the units of a rate and D is
noise intensity. For now, we have in mind a situation where
the coupling and signal are weak enough that their presence
does not radically affect the potential energy landscape; later
we will see that this formula works reasonably well even
outside the weak-coupling regime. Consequently, we evalu-
ate the potential energy U�x� , t� at the unperturbed equilibria
x�i. For the transition from the jth to the ith state,

	Uij�t� = U� x�i + x� j

2
,t� − U�x� j,t� �22�

for i� j. Together, the last two equations define the off-
diagonal elements of W. The diagonal elements are deter-
mined by probability conservation, which requires that the
elements of each column of W sum to zero.

V. COMPARISON

In this section we present results for a few variations of
the basic rate model. In all cases they compare reasonably
well with each other and also with the earlier Langevin simu-
lations. This suggests that the phenomenon of AESR enjoys a
certain robustness. In the next section we turn our attention
once more to extracting some deeper understanding of the
underlying mechanism involved.

Inspired by the Kramers one-dimensional rate formula,
we choose �=a /��2 in Eq. �21�. Then, for the finite-state
transition rate model for N=2, Fig. 5 plots signal-to-noise
ratio R versus noise intensity D for various coupling

FIG. 5. Rate AESR for N=2. Upper plot shows the signal-to-
noise ratio R versus noise intensity D for different coupling
strengths �. Bottom plot focuses on movement of successive
maxima, which reveals yet another maximum. Axes have same
scales as those in Fig. 3. Same parameters as in Fig. 2.
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strengths �. As coupling increases, the maximum R increases
and then decreases, generating a maximum within a maxi-
mum, as in the Langevin model of Fig. 3.

Figure 6 plots the time variation of the probabilities ni�t�
for three different couplings �. For large coupling, the occu-
pation probability of the asymmetric states, +− and −+,
which are always equal by symmetry, empty �as the transi-
tion rates from these states diverge exponentially�. This is
consistent with the vanishing of the corresponding minima in
the underlying potential energy landscape of the correspond-
ing Langevin problem. The asymmetric states become de-
populated at large coupling, when large wavelength modes
dominate the array dynamics, and the population of the sym-
metric states oscillates sinusoidally with the signal.

Figure 7 compares the change in the signal-to-noise
maxima as a function of coupling � for the Langevin and rate

models for arrays of size N=1,2 ,3 ,4. In each case, we focus
on the middle oscillator. Qualitative agreement is very good.
However, the rate model lacks a common uncoupled �=0
limit. For the Langevin model, curves of constant N are an-
chored to the coupling-independent N=1 point, but for the
rate model, curves of constant N drift to larger maximum
signal-to-noise ratio R and noise intensity D. The rate model
can be readily renormalized to correct for this �by scaling the
prefactor and the noise intensity, for example�.

Alternately, a simpler rate model allowing only nondiago-
nal transitions, wherein only one coordinates changes during
each transition, naturally exhibits a common uncoupled limit.
We obtain this rate model from the previous one by zeroing
all elements of the rate matrix W corresponding to transitions
in which more than one coordinate changes. �The resulting
W is a sparse, banded matrix with nonzero entries along main
diagonals beginning with columns 2n, where n
=0,1 ,2 , . . . ,N−1. This suggests possible numerical advan-
tages.� The nondiagonal rate model’s large coupling behavior
is not as good as its small coupling behavior, because diag-
onal transitions dominate at high coupling where long wave-
length modes dominate the corresponding Langevin model.
Nevertheless, the nondiagonal rate model is also in qualita-
tive agreeement with the Langevin model, including—and
most importantly—exhibiting a local maximum signal-to-
noise ratio in both noise and coupling. Figure 8 compares
these improved rate models with the same scales of Fig. 7.

If the coupling � is small, the potential energy landscape
is similar to the unperturbed landscape U0�x��, and power

FIG. 6. �Color online� Time variation of the state occupation
probabilities for N=2 as a function of coupling �. Consistent with
the vanishing of the asymmetric minima of the underlying potential
energy landscape, the asymmetric states +− and −+ become de-
populated at large coupling.

FIG. 7. Comparison of Langevin and finite-state transition rate
model of AESR for arrays of length N=1,2 ,3 ,4 at the parameters
of Fig. 2.

FIG. 8. Comparison of modified finite-state transition rate mod-
els at the parameters of Fig. 2.
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series expansions provide good approximations to the loca-
tions of the perturbed extrema. Generalizing Eq. �21� to

Wij = �ije
−	Uij/D, �23�

and approximately evaluating the potential energy U�x� , t�
at the perturbed equilibria, we can explicitly write the
transition rate matrix for any N. For an N=2 array with free
ends we find

W =�
1 − 2W1,1 W1,−1 W1,−1 0

W1,1 1 − W1,−1 − W−1,1 0 W−1,−1

W1,1 0 1 − W1,−1 − W−1,1 W−1,−1

0 W−1,1 W−1,1 1 − 2W−1,−1

� , �24�

where

�ij =
��a − ���2�a − �� + 3ij��

2�
�25�

and

	Uij =
�a − ��2

4b
+ ij

��a − ��
b

+ j�− jc − i
3�

2bc̃
�A cos��st + �0� �26�

with

c̃ =�a − �

b
. �27�

For small to moderate coupling �, these equations imply
AESR qualitatively similar to that of the nondiagonal rate
model of Fig. 8.

VI. DISCUSSION AND HEURISTICS RECONSIDERED

Our finite-state transition rate models of AESR nicely
capture the qualitative features of the corresponding Lange-
vin models. They are intuitive and easy to construct and are
fast to implement, at least for small arrays. They should fa-
cilitate the study of the effects of parameters, especially a
and b for the bistable potential wells and � and f for the
signal, on AESR. Unlike the Langevin models, it is easy to
efficiently tune and run the transition rate models with the
signal just barely above the noise, and so investigate impor-
tant marginal situations of AESR. Furthermore, the Floquet
theory formulation can be used as a springboard for devel-
oping an analytic theory of AESR �2,19�.

While it is encouraging to have found a rate description
which agrees reasonably well with the Langevin model, we
can ask if it leads us to a better physical understanding of
AESR. In fact, the combination of the transition rate formu-
lation and the energy landscape model gives us the means to
make concrete our earlier heuristic picture, as we now show.

Consider once again the N=2 situation, and focus on
the transition between the −− and ++ states. The total rate

is a sum over all paths �all transition sequences� between
the −− and ++ states. We include only the simplest ones,
those involving one and two steps, since typically the more
transitions within a path the smaller its contribution to the
overall rate. Figure 9 indicates the three simplest paths. Path
B is the direct path, while paths A and C represent transitions
where first one, then the other, particle switches. The total
rate is the sum of the three individual rates

W = WA + WB + WC. �28�

Path A is itself a two-step process. If we assume the steps
are statistically independent and occur sequentially

1

WA
=

1

W1
+

1

W2
, �29�

where W1 is the rate for the first step, and W2 for the second.
By symmetry, WC=WA. Putting this all together, we have

W =
2

1/W1 + 1/W2
+ WB. �30�

The energy landscape model gives us a way to directly
evaluate these rates. The energy barrier between the −− and

FIG. 9. Simplest paths between the −− and ++ states.
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−+ states is the sum of the double-well, spring, and signal
energy differences �see Eq. �2��

	 +
1

2
� + � cos �t . �31�

This is the energy difference between the saddle point and
the stable fixed point �taking “unperturbed” values for the
coordinate positions −1,0 , +1�. The energy barrier between
−+ and ++ states is

	 −
3

2
� + � cos �t , �32�

where the factor of 3 arises from the fact that the spring
energy is four times greater in the −+ state than at the saddle
point separating it from the ++ state. Finally, the energy bar-
rier for a direct transition between −− and ++ states is

2	 + 2� cos �t . �33�

Using the Arrhenius-type formula W�exp�−U /D� to
convert energy barriers into rates, we find

W = exp�−
	 + � cos �t

D
� f��� + exp�−

2	 + 2� cos �t

D
� ,

�34�

where

f��� =
2

exp��/2D� + exp�− 3�/2D�
. �35�

The last term in Eq. �34� is the direct rate, and �of course�
does not depend on the coupling parameter �. The effect of
coupling on the indirect rate is carried by the factor f���.

In Fig. 10, we plot f vs � /D. In the uncoupled limit, f
→1, and the indirect rate dominates over the direct rate �as it
should�. For small coupling, f increases, and the indirect rate
is enhanced. For large coupling �and fixed noise level D�, f
�exp�−� /2D� and the direct rate eventually dominates over

the indirect rate. These features agree with what we observe
in our simulations.

We are thus led to the following interpretation and �see
below� a testable prediction. In the first step along the indi-
rect path, the presence of coupling costs the system energy,
and this suppresses transitions; however, for small coupling
the second step more than compensates for this cost, leading
to an overall enhancement of the transition rate. In terms of
the energy landscape, the presence of the spring makes it
more difficult for any one particle to surmount its potential
barrier, but once over the barrier the deterministic dynamics
drives the system to the +− fixed point, putting additional
energy into the spring, which makes it “extra favorable” for
the other particle to follow along. But for enhancement of the
overall rate it is not enough that the coupling force is attrac-
tive: from Eq. �29�, we see that if the suppression of the first
step is larger than a factor of 2, the total rate is necessarily
lower no matter how great the enhancement of the second
step.

These considerations are intended to provide a rough es-
timate of the situation. That said, if we follow through the
full implications, we are led to a testable prediction. Refer-
ring to Eq. �32�, we note that if the numerical factor of 3 was
instead smaller than unity, the coupling factor f would be
monotonically decreasing and the predicted optimal coupling
would be zero, even if the coupling was attractive. Con-
versely, larger values of this numerical factor should enhance
AESR. We have tested this by simulating the Langevin prob-
lem with a coupling force of sgn�x2−x1�� �x2−x1�� for vari-
ous values of the parameter �. We expect superlinear cou-
pling ��1 to enhance AESR and sublinear coupling ��1
to diminish AESR. As shown in Fig. 11, numerical simula-
tions support these expectations.
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FIG. 10. Indirect rate coupling factor f exhibits a local maxi-
mum as a function of coupling strength �.

FIG. 11. Superlinear coupling ��=3� produces greater enhance-
ment than sublinear coupling ��=1/2�. The curves are smooth fits
to the numerical data.
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